## Table I. Reactions of 7 with Aldehydes and Ketones Scheme V **Scheme V Scheme** V



*i*-Pr, H 9, 52 (59) 16 (15<sup>b</sup>)<br> *t*-Bu, H 10, 56 15<sup>b</sup> t-Bu, H  $10, 56$   $15^b$ <br>  $-(CH_2)_5$   $11, (43)$   $40^b$  $-(CH<sub>2</sub>)<sub>5</sub>$  11, (43)  $40<sup>b</sup>$ <br>Ph, H 12, 38<sup>c</sup> 20<sup>b</sup> **Ph**, **H** 

<sup>a</sup> Isolated yields; yields in parentheses refer to 9:1 Me<sub>2</sub>O-THF system.  ${}^bG\text{C}$  yields. 'PhCH<sub>2</sub>OH (30%) and CH<sub>2</sub>= $C$ (CH<sub>3</sub>)CH<sub>2</sub>C-H20H (31%) were **also** isolated.

 $2,2$ -Dimethyloxetane<sup>10</sup> undergoes reductive lithiation by LDBB at  $0 °C$  for  $2 h$  to form lithium 4-lithio-2-methyl-2-butoxide **(6),** which was trapped with (E)-2-methyl-2 butenal to give, after acidic treatment, the natural product,  $(\pm)$ -ocimenoyl oxide  $(6)^{11}$  in 57% yield. The same oxetane, however, when subjected to reductive cleavage in the  $Et<sub>3</sub>Al-LDBB$  system followed by treatment with this aldehyde gave the expected diol **8** at first in only 27% yield along with 3-methylbutanol **(50%)** resulting from the protonation of the tertiary organolithium **7.** The yield of 8 and analogues in the latter process could be improved by changing both the solvent and the electrophile, $^{12}$  since both were determined to be proton sources. Dimethyl ether-THF  $(9:1)$  was found to be advantageous over pure THF particularly when easily enolizable carbonyl compounds were employed, **as** exemplified by the increase in the ratio of **8** to 3-methylbutanol from 0.5 to 1.5 and in the yield of 8 to 45% (Scheme IV).

Table I lists the yields of the diols **9-12** and 3-methylbutanol obtained by trapping the organolithium 7 with some carbonyl compounds.

The moderate yields of the diols **9-12** could result not only from the protonation of **7** but also from other side

 $(12)$  Since reaction of *t*-BuLi with  $(E)$ -2-methyl-2-butenal in THF gave a high yield of the addition product, we conclude that triethylaluminum, a high yield of the addition product, we conclude that triethylaluminum, by complexing the aldehyde oxygen atom, significantly enhances the acidity of its  $\gamma$ -proton.



reactions such **as** the reduction of the carbonyl compound by **7** to **an** alcohol which effectively competes with the nucleophilic attack at the carbonyl group in the case of benzaldehyde. The delivery of the  $\beta$ -hydride to the carbonyl carbon has previously been observed for lithium

2-lithioethoxide and is well **known** for Grignard reagenta.lb  $=$  Et or *n*-Pr,  $-70$  °C/Me<sub>2</sub>O-THF 9:1) gave an interesting result. It instantaneously underwent the expected exclusive cleavage of the most substituted **C-0** bond. However, the diol **14** and lactone 15 that were generated by immediate quenching of the intermediate with isobutyraldehyde and  $CO<sub>2</sub>$ , respectively, followed by the acidic workup, did not result from the reaction of these electrophiles with the initially formed tertiary organolithium **13a** but rather with the rearranged primary organolithium **13b** (Scheme V). All reported cases of homoallylic rearrangements of or $ganolithiums<sup>14</sup> require many hours at room temperature$ or higher.<sup>15</sup> A systematic study of this unusual rate acceleration is in progress.

Acknowledgment. We thank the National Science Foundation for financial support.

Supplementary Material Available: Sample procedures for the reductive cleavages of 2,2-disubstituted oxetanes in the  $LDBB-R<sub>3</sub>Al system and the spectral data of the products (3)$ pages). Ordering information **is** given on any current masthead page.

## **Carboalumination/Transmetalation/Conjugate Addition: A New Catalytic Cu(1)-Induced Process for the 1,4-DeIivery of Vinylic Groups to Enones**

Bruce H. Lipshutz\* and Stuart H. Dimock

*Department of Chemistry, University of California, Santa* **Barbara,** *California 93106* 

*Received June 25, 1991* 

*Summary:* Exposure of vinylalanes, derived from carbometalations of 1-alkynes, to catalytic amounts of Cu-CN.2LiCl in the presence of an  $\alpha,\beta$ -unsaturated carbonyl group affords products of vinylic ligand transfer in a 1,4 manner.

Transmetalations of a variety of organometallic inter-<br>mediates, mediated by preformed higher order cyano-<br>Kalish, V. J.; Kramer, S. W.; Shone, R. L. J. Am. Chem. Soc. 1990, 112, 7440.<br>Kalish, V. J.; Kramer, S. W.; Shone, cuprates, have only recently begun to expand the scope

of the intrinsic chemistry of various metals.<sup>1</sup> Thus, vinylic stannanes,<sup>2</sup> tellurides,<sup>3</sup> and zirconates<sup>4</sup> readily exchange

(1) For some examples, see: Lipshutz, B. H. Synlett 1990, 119.<br>
(2) Behling, J. R.; Babiak, K. A.; Ng, J. S.; Campbell, A. L.; Moretti,<br>
R.; Koerner, M.; Lipshutz, B. H. J. Am. Chem. Soc. 1988, 110, 2641.<br>
(3) Comasseto, J

7441.

**0022-3263/91/1956-5761\$02.50/0** *0* 1991 American Chemical Society

<sup>(10)</sup> Pre *ued* in 65% yield by sequential treatment of 2-chloro-propionyl choride with MeMgBr (2 equiv in ether) and NaH in DMSO, condensing the product in a cold trap in vacuo. (11) Strickler, H.; Kovacs, E. *Helu. Chim. Acta* 1966,49, 2055.

<sup>(13)</sup> Prepared in 72% overall yield by addition of allylmagnesium bromide to commercial 1-chloro-3-pentanone followed by cyclization of the tertiary alcohol in the NaH/Et<sub>2</sub>O-DMSO 95:5 system.

the tertiary alcohol in the NaH/Et<sub>2</sub>O-DMSO 95:5 system.<br>
(14) Review: Grovenstein, E., Jr. *Angew. Chem., Int. Ed. Engl.* 1978,<br>
17, 313-332. Recent examples: Grovenstein, E., Jr.; Black, K. W.; Goel, S. C.; Hughes, R. L.; Northrop, J. H.; Streeter, D. L.; VanDerveer, D. J. *Org. Chem.* 1989,54, 1671.

<sup>(15)</sup> Maercker, A.; Weber, K. *Liebigs Ann. Chem.* 1972, 756,43.











their vinylic ligands for alkyl groups on copper. Vinylic alanes, formed via Negishi-type carbometalations with  $Me<sub>3</sub>Al/catalytic Cp<sub>2</sub>ZrCl<sub>2</sub><sup>5</sup>$  have also been converted to mixed higher order cyanocuprates, which transfer vinylic residues in a Michael sense to enones.6 This latter process, which is stoichiometric in copper, we viewed **as** potentially realizable using catalytic quantities of a Cu(1) *salt,* rather than stoichiometric amounts of a bis-acetylenic higher order cuprate. We now report that a new, experimentally simple procedure has been developed to effect this type of valuable C-C bond formation under *catalytic* conditions.

Treatment of a 1-alkyne with  $Me<sub>3</sub>Al + catalytic$  $\text{Cp}_2\text{ZrCl}_2$  in  $\text{CH}_2\text{Cl}_2$  at ambient temperatures affords the expected vinylic alane **1.6** Dropwise addition of this **so**lution to 10 mol % of CuCN<sup>2</sup>LiCl<sup>7</sup> in THF/Et<sub>2</sub>O at 0 °C over the course of 1 h in the presence of a substrate leads to the 1,4-adducts **2** in good isolated yields (Scheme I).8

Table I. Carboalumination/Catalytic Cu(I)-Induced **Conjugate** Addition Reactions



'Fully characterized by IR, NMR, MS, and HRMS data. vacuum removal of excess Me<sub>3</sub>Al prior to exposure of the vinylalane to Cu(I). <sup>d</sup>Ratio (of isomers): 2.8:1 trans:cis. 'Ratio: 25:1 trans:cis. 'Ratio of diastereomers: **3.51.** #Ratio of diastereomers: **5.7:l.**  <sup>b</sup> Isolated following column chromatography. <sup>c</sup> Yield obtained by

Several examples are illustrated in Table I from which the following points emerge: (1) neither the rate nor percent conversion of the coupling was affected by the presence of the sulfide function in acetylene 3; **(2)** unprotected alcohols (e.g., 4 and 7), undoubtedly as their alanates,<sup>5</sup> readily participate and suggest that hydroxyl protecting group chemistry is not **required** when part of the 1-alkynyl educt; (3) various substitution patterns associated with the Michael acceptor seem amenable, including an Evans chiral auxiliary **(6)?** 

Quite unexpectedly, the nature of a silyl protecting group present in the acetylene associated with a *primary* hydroxyl can significantly alter the course of the transmetalation. As illustrated in Schemes I1 and 111, use of either the TBDMS or TBDPS groups led to predominant methyl, as opposed to vinyl, ligand transfer, irrespective of the fact that the silyl group (in, e.g., **8)** is nine atoms removed from the "business end" of the chemistry. Chelation via the ether oxygen may well play **a** role, and hence its blockage in this capacity via the corresponding TIPS ether (as in **9)** appears to reverse this trend.1° When the

- 
- 

<sup>(5)</sup> Negishi, E*. Pure Appl. Chem.* 1981, *53*, 2333.<br>(6) Ireland, R. E., Wipf, P. *J. Org. Chem.* 1990, *55*, 1425.<br>(7) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. *J. Org. Chem*.

<sup>1988, 53, 2390.</sup> **1988**, 53, 2390. **1998**, 63, 2390. **1998**, 63, 2390. **1998** (8) The desired 1,4-addition is usually accompanied by somewhat competitive delivery of a methyl ligand (due to the excess Me<sub>a</sub>Al presthis side product, the residual Me<sub>3</sub>Al can be removed under vacuum prior to exposure of the vinylalane to the enone/CuCN (see Table I, entries **1** and 6). 1988, 53, 2390.<br>
1988, 53, 2390.<br>
<sup>1988</sup>, 53, 2390.<br>
<sup>1988</sup>, 54, 2390.<br>
<sup>2</sup> which accounts for the majority of the mass balance. To minimize<br>
<sup>3</sup> which accounts for the majority of the mass balance. To minimize

<sup>(9)</sup> Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1984, 106, 4261.<br>
(10) Magnus, P.; Mugrage, B. J. Am. Chem. Soc. 1990, 112, 462. Frye

<sup>(10)</sup> Magnus, P.; Mugrage, B. J. Am. Chem. Soc. 1990, 112, 462. Frye S. V.; Eliel, E. J. Am. Chem. Soc. 1988, 110, 484. Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc. 1990, 112, 6130. Frye, S. V.; E

**<sup>(11)</sup>** Collins, P. W. *Med. Res. Reo.* **1990,10,149;** *J.* **Med. Chem. 1986, 29, 437.** 

**<sup>(12)</sup>** For other representative procedures involving vinylic **alanea** and catalytic Cu(I), see: Ziegler, F. E.; Mikami, K. *Tetrathedron Lett.* **1984, 25,131.** Sharma, **5.;** Oehlschlager, A. *Tetrahedron Lett.* **1986,27,6161.** 

silyl ether relates to, e.g., a teriary hydroxyl, the "normal" sequence of events occurs. This was demonstrated by the

```
(13) .A representative procedure for the preparation of 6 is aa follom. 
A solution of zirconocene dichloride1s (84.0 mg, 0.287 mmol) in 2.25 mL 
of CHzClz was treated with 1.75 mL (3.0 mmol) of a 2.0 M solution of 
addition of 3-butyn-1-ol (80.6 mg, 1.15 mmol) dissolved in 1.0 mL of
CH2C12. The reaultmg solution was allowed to warm to mom temperature with stirring and then taken up into agae-tight 5-mL motor-driven syr-
inge<sup>16</sup> with a 0.50-mL CH<sub>2</sub>C1<sub>2</sub> wash. A 1.0 M solution of CuCN-2LiCl was prepared by dissolving a flame-dried admixture of CuCN (85.0 mg, 0.949
mmol) and LiCl (81.7 mg, 1.93 mmol) in 0.95 mL of THF at room temperature with stirring. The contents of the syringe were added slowly, dropwise, to 4.0 mL of dry Et_2O with stirring at 0 °C. When the solution
became visibly yellow, 0.10 mL of the 1.0 \tilde{M} CuCN.2LiCl solution was added dropwise followed by the dropwise addition of a solution of 2-<br>methylcyclopentenone (95.9 mg, 0.998 mmol) in 1.0 mL of Et<sub>2</sub>O. The
vinylalane was added over 1 h and the resulting suspension stirred at 0 °C for an additional 1.5 h. The reaction mixture was then poured into
a solution of 20 mL of 1.0 M tartaric acid and 20 mL of Et<sub>2</sub>O at 0 °C. The
biphasic suspension was allowed to warm to room temperature with 
vigorous stirring, which was continued until the solids had diesolved. The 
layers were then separated and the aqueous phase waa extracted three 
times with Et<sub>2</sub>O. The combined organic layers were washed with brine,
dried over NMO,, and chromatographed (~ilica gel, CHzC&/EtOAc, 173) 
to yield 148.8 mg (82%) of the desired keto alcohol aa a 2.81 mixture of 
diastereomers by capillary GC: R_t 0.16 (9:1 CH<sub>2</sub>Cl<sub>2</sub>/EtOAc); IR (film) 3435, 1740, 1457, 1166, 1058 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta 5.16 (d, 1 H, J =<br>8.6 Hz, major), 5.07 (d, 1 H, J = 10.0 Hz, minor), 3.71 (t, 2 H, 
126.23. 60.35.60.23.51.05. 47.73.43.94. 42.82.42.70. 37.20. 35.64. 27.94. 
27.29, i6.35, i6.23, i4.14, i2.00; "a Bpectruk (EIj m/z (rei inbnsityj 
182 (M+, 16.5), 152 (31.2), 149 (11.5), 138 (11.5),137 (58.0), 135 (11.2), 123 
(14.3), 121 (10.2), 111 (15.9), 110 (100),109 (50.2), 108 (11.1),107 (25.0), 
97 (51.5), 96 (30.6), 95 (82.4), 94 (11.2), 93 (50.9), 91 (21.9), 84 (10.7), 83<br>(11.1), 82 (16.5), 81 (52.7), 80 (13.6), 79 (39.2), 77 (25.0), 69 (23.0), 68 (12.7),
67 (46.7), 57 (18.2), 56 (12.3),55 (51.2),53 (20.6); HRMS (EIj calcd for C11H1802 182.1307, found 182.1287.
```
preparation of prostanoid 10, the 14-methyl analogue of misoprostol.<sup>11</sup>



In summary, a new method is described that combines the virtues of a carboalumination together with **a** *catalytic*   $Cu(I)$ -based transmetalation scheme<sup>12</sup> for vinyl ligand addition to  $\alpha,\beta$ -unsaturated carbonyl derivatives.<sup>13</sup> Highly basic reagents (e.g. RLi, RMgX) normally involved in cuprate formation<sup>14</sup> play no role at any stage. Moreover, solvent exchange from chlorinated.to ethereal media is not necessary.<sup>6</sup> further streamlining the process. Further advances in the transmetalation chemistry of Cu(1) reagents will be reported in due course.

Acknowledgment. Financial support provided by the NSF (CHE **90-05758)** and the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged. We are indebted to Boulder Scientific Co. for providing generous amounts of  $Cp<sub>2</sub>ZrCl<sub>2</sub>$  used in this study.

**<sup>(14)</sup>** Lipshutz, **B.** H.; Sengupta, S. *Org.* **React.** In press. Poener, 0. H. *Org.* **React. 1975,22, 253; 1972, 19, 1.** 

**<sup>(15)</sup> Material** of excellent **quality** waa obtained from Boulder Scientific Company, Mead, CO.

<sup>116)</sup> Use of a gas tight dropping funnel will also suffice; half of the examples in Table I were carried out with this alternative technique.